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ABSTRACT

A multifunction is ~~1yhedral if its graph is the union of

finitely many polyhedral convex sets. This paper points out some

fairly strong continuity properties that such multifunctions

satisfy , and it shows how these may be applied to such areas as

linear complementarity and parametric programming.
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SIGNIFICANCE AND EXPLANATION

In analyzing nonlinear programming problems and more general

equilibrium problems , we sometimes use as tools certain functions,

called “multifunctions ,” whose values are sets instead of points.

In general these multifunctions cannot be expected to have good

continuity properties. However , we show here that if their graphs

have a special structure-—which is found in the cases cited above——

then they do obey unexpectedly strong continuity conditions . Some

applications are pointed out.
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The responsibility for the wording and vcews exp~essed in this des~riptive
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SOME CONTINUITY PROPERTIES
OF POLYHEDRAL NULT IFUNC TIONS

Stepher. ~~. Robinson

1. Introduction. This paper deals with some useful continuity properties of a class of

multivalued functions which we call polyhedral. We begin here by recalling some basic

properties of multifunctions , then in Section 2 we prove the main results, and in Section

3 we show how these may be applied to problems in parametric programming . We also point

Out (in Section 2) applications of our results to linear complementarity problems.

Multivalued functions, or multifunctions, are functions whose values are sets instead

of points. Given such a znultifunction , say F, from 1R
1
~ to , we define ~ae

of F to be the set

t(x ,y) ~~ fl y E F(x)}

The effective domain of F (dom F) is sl
(r’
F
), and the !~~~~.of F (im F) is 2~~~-~ ’

where and 
2 

are the canonical projections from ]R~ ~ to and

respectively. The multL~unction F is called closec~ or convex if is closec~ o~-

convex. The inverse of F is th~ multifunction fror’ ~ m ~~ whose graph is

{(y,x) (x ,y) rF r .

Our concern here will be with polyhedral multifunctions: i.e., those whose graphs

are unions of finitely many polyhedral convex sets, called components. This class of

multifunctions can be shown to be closed under (finite) addition , scalar multipl ic a ti~~~,

and (finite) composition . M especially simple example of a polyhedral m u l t i f u n -t i~~~

is a linear transformation from to its graph has just one component, a

space of 1R5’ . Of course , this multifunction is also convex. Mother example c’f

a polyhedral convex multifunction is the solution set of a system of linear inequalit~t~

and equations, regarded as a function of the right-ha-’d side : let C be a noncr~ ty

polyhedral convex set in ~rd K be a nonempty ‘olyhe~ral convex cone in , and

let A be a linear tran or’~- - ‘, from to • ‘or each x d c f i n c ~ F (x ’ ~~‘

Sponsored by the United States Army under Contract No. 0AAG29-75—C-0024 and i~ ::a~ ~~~~
science Foundation under Grants Nos. HC574—2O584 A02 and MCS—790l066.

1b~~~ 

.:: 
--
~~~~

- _ _ _ _ _ _ _ _ _ _



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -------,-.-- -.---- -——---~~~~
-—r — , . - --

~
- - ,.---..- , , . -~~.- 

.

~~~~

. -- - ---

~~~~ 

. .

‘ Ax-K , x .  C

, x 4 c .

Then for b € ~~m one has

F 1 (b) = {x . C AX—b c K) ,

so F 1 displays the solution set as a function of b . Evidently F and F
1 

are

polyhedral convex multifunctions.

Examples of important nonconvex polyhedral multifunctions are provided by linear

generalized equations (4]. To illustrate these, let C be a nonempty polyhedral convex

set, and let be the indicator function of C

0 , x € C

~i (x) :C 
~ =, x~~~C .

The subdifferentia]. of thec ~rje1ds the (outward) normal cone to C

{y c ~~ V C € C , (y, c.-x > < 0 ) , x € C

~y (x) =C 
~~~, x~~~C ;

see (6] for details. If A is a linear transformation from to itself, and if

a , we may study the linear generalized equation

0 € A x — a + aw~ (x)  . (1)

If  C = W.~ this just says Ax — a = 0 , whereas if C ]R (the non—negative orthant)

i t  is equivalent to

A X — a > O  , x > O  , < x ,Ax — a >  = 0 ;

i . e .,  (I) formulates the linear cosnplementarity problem. By taking various choices of C

one ~isy also cast proble’s ?f lin~ar or quadratic pro;ra.~~ing into the form (1) .  Z’.n

example , to which we shall return in Section 3, is provided by letting P and Q be

rone mpt y polyhedral con~ex cones in and ~~ respectively, and

r H oTi  E-cl
, x := , C~ ‘ Q

j) 0 j  L b .J LuJ
0 is a q p r n a - r i~< , H is a symmetric p~~p matrix, c ,y € and

C l )  is equivalent  to

—2—
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T * A
H y — 0 u + c ~~~~P , D y — b Q

y P , u ~ Q , (2)

y , Hy — 0T
u + c > = 0 , ( u ,Dy — b > 0

which are the necessary optiniality conditions for the quadratic programming problem

minimire (y, My> + (c ,y

*subject to ry — b € Q (3)

Y E  P .

*Here ~ denotes the dual core r~ Q

tw  - V q Q • (w ,q ) > 0},

*and similarly for P • By appropriate choice of P and Q , we can write any quadratic

prograr.ming problem in t}’c far-’ ‘3). Thus the general forn (1) has a wide range of

practical applications.

If we now define , for x

F(x) : Ax + 
~~~

(x) (4)

then for any a one has

F 1(a) = jx 0 € — a + 
~~~~~~~~~~~~~

i.e., the solution set of (1). However, It is easy to show that the graph of is a

firite union of polyhedral convex seta , so that F (as the sum of ~~~~~~ and A(•))

i~ ~-o1 yhedra1 , and so therefore ‘S F 1 
.

Li -3-
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2. continuity results. Polyhedral multifunctions, whether convex or not , have some

strong continuity properties not shared by multifunctions in general , and in this section

we shall discuss some of these. From now on, the symbol IC 11 will stand for the Euclidean

nox~ unless otherwise stated, and we shall use B to denote the Euclidean unit ball:

r B : Cx lI xCI

The f i rs t  continuity property is an extension of the Lipschitz condition to multi—

functions. Given a multifunction F:IR~ + • we say that F is locally upper

Lipschitzian at a point x
0 

with modulus A , if for some neighborhood N of x0 
and

all x € N , F(x) C F(x0) + 
A (Ix—x0IIB. Note that this implies either x0 dorn F or

x0~~~~cL d o m P .

It is clear that not all multifunctions can be expected to satisfy this property .

What we shall show is that polyhedral multifunctions do satisfy it , and moreover that

the Lipschitz constant does not depend on the point x
0 

. We begin with a lemma.

LEMMA : Let P : + m
m be a nonempty polyhedral multifunction and let C .

1 < i < k , be its components. Let x
0 € dom 

p, and define I:— {iIx 0 e 
1 (C . ) ,  where

is the canonical proj ection of x mm on mn Then there exists a neighborhood

U ( x
0

) such that

(U x mm ) n graph p c Li G.
id

PROOF: For each i , both {x
0
} x and C . are nonempty polyhedral conve x -et ~~

in m~~
m . If i ~ 1 they do not meet, and thus by (6, Cor. 19.3.3) they can be strongly

separated. In particulaç then, there is some neighborhood U~ (x0) such that -

G. = 0. Let U : (~ U. ; this U is a neighborhood of x because the number of
1. . 1  1 0

V i~I
components is finite. Clea’dy,

k
(U x ~

m ) fl graph p c ( U G.) \ ( U G
i
) c U C .

i—l 
j  

i41 i~ i ~
and this completes the proof.

This lemma tells us that if x € C and y c P (x) , then (x,y) belongs to a component

C1 which also contains (x0,y0) for some y0 •. P(x0). That fact, together with kr.e..:r

results about polyhedral convex sets, will suffice to prove our first continuity f l .

i i
“

I

—4—
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PROPOSITION 1: Let F be a polyhedral multifunction from m~ into mm . Then

there exists a constant A such that F is locally U. L. (A) at each x0

PF~3OF: If graph F is empty there is nothing to prove. Otherwise let C .

1 < i < k , be the components of F • and for each i let a tnultifunction F . be

defined by

F , (w) = {z I (w,z) € C , ) it [C, n
1 1 2 1  1

By a theorem of Walkup and Wets (7) , the intersection C . (1 ir
i
1(.) is Lipschitzian in

the Hausdorff metric whenever it is nonempty. Thus there is some A . such that if

F.(w1) $ ~ F.(w0) then F.(w
1
) C P,(w~~) + A . I1 w 1

—w0IIB. Let A: maxk
1 ~ 

, and

choose any x
0 € lR~~. If x0 4 dom F then since doe F is a finite union of polyhedral

convex sets, some neighborhood of x0 is disjoint from doe F ; hence F is lY.L. (~)

at x
0 with respect to that neighborhood. If x0 € doe F • define I:= {i Ix 0 

c

by Lemma 1 there exists a neighborhood U(x0) such that

(U x mm ) n graph F C U G .
i€1

Now choose any x € U . If x 4 dam F then the desired inclusion follows trivially

since F(x) •. If x € doe F then let y be any point in F (x); we have

m(x ,y) € (CX m ) n graph F c  U C .

so for some i € 1, (x ,y) € C ., and we know that both F.(x) and F.(x
0
) are nonempty .

Therefore,

y € F.(x) c F~ (x
0
) + A . II x—x0IIB C F(x~) + AII x — x 011 B

since F(x ) = U F. (x ). However, y was arbitrary in F(x), so F(x) c F(x ) +0 1 0  0i€ I
AII x—X0IIB , and the proof is complete.

The essential tool in the proof just given was the theorem of Walkup and Wets; in

(3) the author gave a different proof using Hoffman’s theorem, but the argument needed

there was somewhat longer .

An interesting consequence of this proposition can be developed by introducing the

point—to—set distance defined by

d (X ,A) : inf{II x—afl a c A ),

where by convention the infimum is -i.~ if A is empty.

-5-
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COROLLARY : Let F be a polyhedral multifunction from to iRC , and let i~i be

the modulus associated with F 1 
by proposition 1. Then for each y e there is some

e > 0 such that if x m
n wi th d(y, F ( x )J  < r then

d~~ ,F
1(y)] ‘~ ud (y,F(x)) . (5)

PROOF: By Proposition 1 thete is some neighborhood of y on which F ’ is upper

Lipschitzian at y with modulus • Choose € so that the ball about y with radius

is included in this neighborhood. Now if x € with d [y,F(x)) < € then since

F(x) is closed there is some y
1 € F(x) with d(y,F (x) I = II y—y 111 < £ . Therefore,

F~~~~ (y1) 
C F

1 (y) + i.~I I y —y 1IIB

but since x F 1(y 1
) we ha ve

d[x,F
1 Cy)) < iII y—y 111 = id (y,F (x) 1 ,

as was to be shown.

We observe that this rroof ‘~oes not depend essentially upon polyhedrality , but rather

upon the local upper Lipschitz continuity of F 1
, and therefore a version of corollary

could be established also for non—polyhedral inultifunctions whose inverses have this prop-

erty. The quantity d(y,F(xfl can be regarded as a kind of ‘residual” measuring the

extent to which x does not satisfy the relation y FIX)

As an illustration of why d(y ,F(x)] has to be sufficiently small in this result,

consider the derivative of the function f :m  • m defined by

ix , X E [—1 ,1]
f (x)

x i , x 4 [—1 ,1)

One has

1 , x > l

f’(x) x , x € [—1 ,1)

—1 , x < 1

so ~~.at f ’ is a polyhedral  mult i funct ion (although it is actually single—va lued), and

the r e fo re  so is f ’~~ . For y = 0 , we see that if d[0, f’(x)) is small then x is

i )~i’ to 0 • and for  such x it is true that

—6—
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d[x ,f ’
1(0) 1 = II xII < u d IO , f ’  (x)1 = ~II xII ,

in fact with i= l .  But for large x d t O ,f’(x)l is never larger than 1 , whereas

= lI xil increases without bound, so that (5) does not hold for such x

For a polyhedral convex multifunction F , however, (5) holds for all x € and

y e mm F. This can be seen directly by observing that

—l —l
F (y) = n it

2

and this is Lipschitzian (in the HaUsdorff metric) on ins F by the Walkup—Wets theorem .

If y € in F and x € don F, then by choosing y1 € F(x) with II y—y~,II = d (y,F (x)) one

has for some Ii,

x € P’
1

(y
1
) C F

1(y) + i I I y—y 1II B

so that d [x ,F
1(y)J< idty,F(x)); on the other hand, if x 4 dam F then the inequality

holds trivially because d[y,F(x)1 =

Our first proposition showed that the images of points near a given point were near

the image of that point (but perhaps not vice versa) .Our second shows that any bounded

subset of in F cones from some bounded subset of dom F.

PROPOSITION 2: Let F be a polyhedral multifunction from to mm . If K is

any bounded subset of im F then there is a bounded set M C such that F(M) o K.

PROOF: The imaqe of F is the union of Finitely many sets of the form

where Gi is a component of the graph . Since the linear image of a polyhedral convex

set is closed , im F is closed; hence ci K is also a bounded subset of ins F , and so

we may assume with no loss of generality that K is compact. Choose any point y0 € K

and apply the lemma to F 1 
in order to produce a neighborhood V of y0 such that

V n in F = L)~~~(V n i
2

(G .)), where the C
~ 

are components of the graph of F with

y0 
€ ñ~~ 1~T 2 (G .). Let W be any bounded polyhedral convex neighborhood of y0 

contained

in V , and defi ne ~ ‘
~ 

for i = l,....,k. The sets are compact convex

polyhedra , and thus each is the convex hull of its (finitely many) extreme points.

Therefore , for each i the convex function f.(y) := inf{I(xH (x ,y) e Gd,) attains a

r’ax ni~’n on H . (at one of the extreme points), say 
~~

. • Let ~i : max~~~1 
ii~ . If

im F , one has fer somo ~. , y H . thus , there exists x with (x,y) C.

-7-
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(so that y a F(x)) and lIxC I < f .( y)  < < p. Therefore F(pB) ~ W 1 mm F. Now , a

relative neighborhood of the form W n im F can be constructed about each point of K

and by compactness a finite number of these will cover K . As each of them is con tai c td

in the image under F of some ball, we have the result.

By recalling that the linear complementarity problem can be written in the form ( 1)

(with C = ~
) we see that the results of Propositions 1 and 2 can be applied immediately

to such problems (or to other linear generalized equations with polyhedral sets C). ThE-

solutions of such problems therefore obey the local Lipschitz condition described in

Proposition 1 , and by Proposition 2 if the “constant term” denoted by a in (1) is

allowed to vary in a bounded set, then for each such a either the solution set is erspt-;

or its distance from the origin obeys a uniform bound (although , of course, the solution

set itself may be unbounded).

—8—
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3. Applications to parametric programming. In this final Section , we apply Proposi tions

I and 2 to the problem of parametric optimization . We shall consider the function

Af:mm • (-= ,+=] given by

Af(z) := inf {f(x,z)I x A 1(z)}, (6)

where f:m~ 
X m’~ • m and where A is a polyhedral multifunction from m

m 
to 1P~

The function Af expresses the optimal value in (6) as a function of the parameters z

the notation Af is suggested by that of (6]. We define the effective domain of Af by

don nf = {z I Af(z) < + } .  We shall prove two general continuity results for Af , and

then illustrate one of these results in the simple case of convex quadratic prograr~’~ur-~ .

For ease of writing , we shall no=m m’~ x m
m by the sum of the ~1orms on m

n 
and m

m

PROPOSITION 3; Let f:]R
n 

x • m , and let A bea polyhedral multifunction from

~~~ 
~ !fl 

Suppose that f is Lipschitzian on bounded subsets of . If

z
0 

is a point of doss Af such that A
1 (z

0
) is bounded, then for each z near z

one has

Af(Z) > Af (z
0
) — LII z—z

0
11 (7)

for some L which depends only on 11 z
0

11 and the bound for A
1
(z
0
).

PROOF: Let two numbers a and ~ be specified, and let f be Lipschitzian with

modulus A on {(x ,z) c mm l II xII < ~-s’l, II z II -
~ ~}. Let p > 0 be a local upper

LipschitZ modulus for A 1 (Proposition 1), and define L := X ( l + L ) .  Choose any z ,

with A
1 (z

0
) c ~B. Let ~! he ct neighborhood of z

0 
such that N z + an~ fol

each z ~ N , A (z)  c A (z
0
) + u II~~_z~ I I B ~ and choose z € N . If z don Af

t~ien (7) is certainly true. If -
~ dons Af , then z don A

1
. Choose 0 and

x € A (Z)  with If(x ,Z) — Af(z) j < €. Observe that since A ( c  C A z ~~ • JIz—z

one has (i) li xIl < B +pp
1 

= B+l , and ( i i )  for some x0 € A
1 (z

0
), II x—x 0’~ ‘. c— c -

Then

Af (Z
0

) < f (x 0,z0
) = (f(x

0,
z0

) — f(x ,z)) + f ( x ,z)

A (II x-x0II + II z-z 0
11) + [Af (z)  +

< A f ( Z )  + LJI z—z
0

11 + € .

—9—
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Letting 0 , we obtain ( 7 ) ,  which f in ishes  the proof .

For this result we assumed the (strong) condition that the feasible set A 
1( i )

was bounded. We can remove this  hypothesis if we assume that the set of optimal solutions

of the minimization problem is a polyhedral multifunction.

PROPOSITION 4 :  Let f ; i R
hi m~ • m and let A be a isultif unction from IP~ to

Suppose that f is Lipschitzian on bounded subsets of fl~ m
m and that the

multifun ction P:m
m m~ defined by

p ( z) ;= tx A 1(z)~ f(x ,z) = ~f(z)1,

is polyhedral. Then for each bounded ç C m
m there is a constant L such that if

z0 a Q c dots P then for each z € don P near

Af(Z) — Af (z0) I  < LII z—z0
I1 . (8)

In this case Af is LipschitZian on each bounded convex subset of dons P.

PROOF: Let v be the local upper Lipschitz constant for P (Proposition 1).

Select some bounded set Q c m
m , let Q c ~B and let B be large enough that

P 1(~B) [(z+l)B) don P (Proposition 2). Let f be Lipschitzian on

~(x,z)I II xII < 3+-~,i zII < a+1} with modulus A , and define L := A (v+l). Now choose

z0 € Q n dom P; let N be a neighborhood of z0 
contained in z

0 
+ B and such that if

z € N then P(z) -: P(z0) + vIIz—z0~B. Choose any z a N n dots P ; then since

z a (~~ -1)B  r don p there is some X P(z) with lI xI l < 6. There is then some x
0 

c P(z0
)

V . i t h  II x—x~ < v (Iz—z
0
U < v (so that 11x

0
11 < B+v), and we have

IA f (z) — Af (z
0
) = f(x ,z) — f(x

0,
z0) I ~ 

)(II x—x0
11 + II z—z0

II )

c (v-+-l) l?z—z 0
II LII z—z

0
II

The proof that Af is LipschitZian  on bounded convex subsets of dons p is a routine

exercise once (8) is established , and we omit it.

To show how Proposit ion 4 may be applied , we return to the quadratic programming

(3j . If  we assume tha t  H is positive semidefinite (i.e., that the objective

V :  :~ t-~:, i: (~~) is convex) , then the conditions ( 2 )  are necessary and sufficient for

.
~~t~ c:~Lit;. ~riti:.-J = ( ,b) , defining F by (4) and f by

f (y,z) ; = ~ (y ,~~y ) + (c ,y )

* 

V 
V

_ _  .: V~ .
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n * VJR ‘ (Dy—Q ), if y~~~ P
A ( y ) :~~

if y 4 P ,

we find that Af(z) is the optimal value of (3), so that

P(z) = :y A
1
(z) 1 f(y,z)= Af(z)~

= {y (y,u) F~~
’(z) for some uJ

= 
1
F~~~) (z)

Thus P is polyhedral , and f is certainly Lipschitzian on bounded sets, so Proposition

4 tells us that the optimal value Af(c ,b) is Lipschitzian on bounded subsets of dons F 1.

In this case dom F
1 

is a closed convex set, since F is maximal monotone and poly-

hedral; thus the subsets need not be assumed convex.

For some other applications of polyhedral multifunctions to stability analysis, see

(4) and (51 .

V 
-11-
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